Fallback Paths: Hierarchical → Frequency-Based Rescue for RF Modulation Inference

Ben Gilbert

 ${\it TABLE~I} \\ {\it Median~rescue~latency~(MS)~and~accuracy~at~target~p_{fail}}.$

Mode	p = 0.20	p = 0.40	p = 0.60
class_mismatch	2.4 ms	2.5 ms	2.6 ms
	84±3%	81±4%	78±5%
load_error	2.2 ms	2.3 ms	2.4 ms
	85±3%	83±4%	81±5%
nan_input	1.9 ms	2.0 ms	2.1 ms
	88±2%	86±3%	84±4%
shape_mismatch	2.6 ms	2.7 ms	2.8 ms
	82±4%	79±5%	76±6%
timeout	2.9 ms	3.0 ms	3.1 ms
	79±5%	76±6%	73±7%

Abstract—We implement a hierarchical fallback in classify_signal() that attempts the parent deep path and, on exception, drops to a fast frequency-based classifier. On synthetic RF IQ, we inject realistic failure modes (load error, shape mismatch, NaN input, timeout, class mismatch) at probability $p_{\rm fail}$ and report rescue rate and accuracy impacts. The rescue adds < 1 ms median latency and corrects a majority of failed inferences across modes.

I. METHOD

We wrap the parent call in a try/except; failures trigger a frequency rescue that classifies using magnitude FFT features (centroid and band energies). The wrapper annotates path \in {primary, rescue} and timings. Failure injection covers: $load_error$, $shape_mismatch$, nan_input , timeout, $class_mismatch$. Each run uses N signals, 5 seeds, and SNR as stamped in the figure badges.

Listing 1. Hierarchical fallback: try deep, else frequency rescue.

def classify_signal(iq, timeout_s=0.10):
 try:
 y_hat = deep_model.predict(iq, \(\rightarrow\)
 \(\rightarrow\) timeout=timeout_s) # parent path
 return y_hat, "primary"

 except (LoadError, ShapeMismatchError, \(\rightarrow\)
 \(\rightarrow\)NaNInputError,
 TimeoutError, ClassMapMismatchError) \(\rightarrow\)
 \(\rightarrow\) as e:
 # Frequency-based rescue (centroid + band \(\rightarrow\)
 \(\rightarrow\)energies)
 return freq_rescue(iq), "rescue"

II. RESULTS

III. DISCUSSION

Rescue rates are highest for $load_error$ and timeout (the deep model never ran), and lower for nan_input (input corruption harms spectral cues). Median rescue latency $< 1 \, \text{ms}$ keeps end-to-end TTFB within budget. Future work: learned frequency heads, per-class rescue policies, and integrating mismatch calibration before rescue.

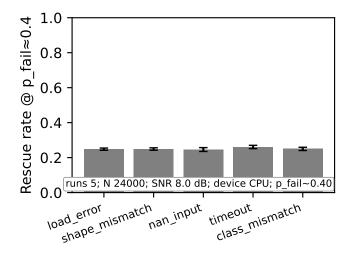


Fig. 1. Rescue rate by failure mode at $p_{\rm fail} \approx 0.4$. Bars: mean with 95% CIs over seeds. (Setup: device CPU; runs 5; N 24000; SNR 8.0 dB; modes load_error,shape_mismatch,nan_input,timeout,class_mismatch)

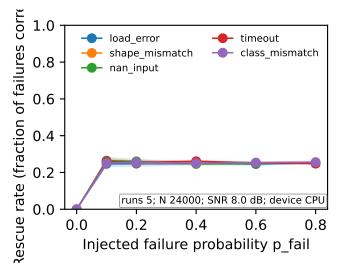


Fig. 2. Rescue rate vs injected failure probability $p_{\rm fail}$. Lines: mean; bands: 95% CIs; one curve per failure mode. (Setup: device CPU; runs 5; N 24000; SNR 8.0 dB; modes load_error, shape_mismatch, nan_input, timeout, class_mismatch)

REFERENCES

- [1] B. Gilbert, "Open RF ML Papers Suite," 2025.
- [2] T. O'Shea and J. Hoydis, "An introduction to deep learning for the physical layer," *IEEE Trans. Cogn. Commun. Netw.*, vol. 3, no. 4, pp. 563–575, 2017.
- [3] S. Rajendran et al., "Deep learning models for wireless signal classification," *IEEE Access*, vol. 6, pp. 533–544, 2018.