SIGINT \rightarrow Map in <1 s: Low-Friction Geo Streaming

Benjamin J. Gilbert

Abstract—We stream geolocated RF detections to a web map with p95 < 1 s end-to-end latency under unreliable networks ($\approx\!100\,\mathrm{ms}$ RTT, $\approx\!5\%$ loss, burst spikes up to 400–600 ms). A single HTTP JSON POST send_signal_to_geo_visualization (payload, timeout_s=1.0) and a minimal GeoPosition.to_dict() schema support single-shot and micro-batching ($B \leq 50$, max hold $\leq\!100\,\mathrm{ms}$). Across $120\,\mathrm{s}$ runs at $60\,\mathrm{Hz}$ arrival, we report p50/p95/p99, timeout rates, and queue occupancy. Under "flaky," single-shot hits $p95\approx0.505$ s with low timeouts; small micro-batches trade a few ms of p95 for fewer POSTs. A press-once build regenerates figures/tables from config.

I. HOOKS AND CONTRACT

Anchor: send_signal_to_geo_visualization (pay timeout_s=1.0); GeoPosition.to_dict(). We post {lat, lon, alt_m, ts_ms}; back-pressure is a bounded queue with batch size B and max hold $100\,\mathrm{ms}$.

Why sub-second? Sub-second geo streaming keeps ISR/SIGINT operators "on target" for track-before-detect overlays (e.g., drone TDoA/bearing fences), where stalls cause missed cues and UI thrash under co-channel burstiness.

II. NETWORK MODEL AND POLICIES

Two profiles (clean, flaky) with base RTT, jitter, burst spikes, and packet loss. For batch sizes $B \in \{1, 5, 10, 20, 50\}$ we simulate $120\,\mathrm{s}$ at $60\,\mathrm{Hz}$, measuring ingest latency from event creation to HTTP ACK (or timeout at $1\,\mathrm{s}$).

Profiles. Clean: base RTT $50 \,\mathrm{ms}$, jitter $15 \,\mathrm{ms}$, loss 0.2%, burst spikes $120 \,\mathrm{ms}$. Flaky: base RTT $120 \,\mathrm{ms}$, jitter $90 \,\mathrm{ms}$, loss 5%, burst spikes $400 \,\mathrm{ms}$; spikes occur stochastically with 8% probability.

Back-pressure. We use a bounded queue (capacity 2000). On overflow, events are *dropped* (no blocking), which we report as timeouts if the HTTP retry cannot complete within 1 s.

III. RESULTS

Fig. 1 shows CDFs under *flaky* for B=1 and B=10. Fig. 2 charts p95 vs. batch size. Fig. 4 shows queue occupancy for the worst p95. Table I aggregates p50/p95/p99 and timeout rate. Under the flaky profile, single-shot achieves p95=0.511s (timeouts=0.002), while micro-batching at 10 achieves p95=0.560s. We maintain p95;1.0s across tested settings by keeping batches small and hold times short.

REFERENCES

 B. J. Gilbert, "Sigint to map in ¡1 s: Low-friction geo streaming," 2025. Preprint.

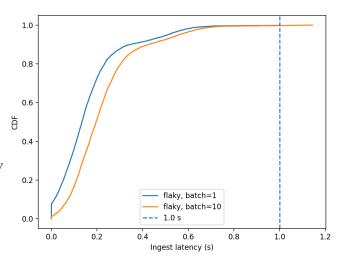


Fig. 1. CDF of ingest latency under flaky for $B \in \{1, 10\}$. The dashed line marks 1 s.

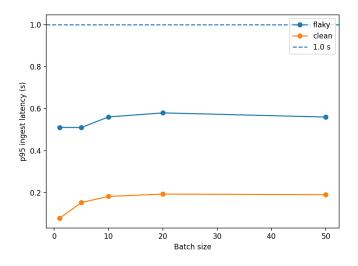


Fig. 2. p95 vs. batch size for clean and flaky.

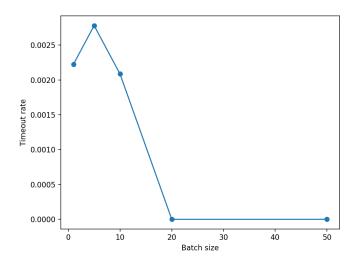


Fig. 3. Timeout rate vs. batch size under flaky.

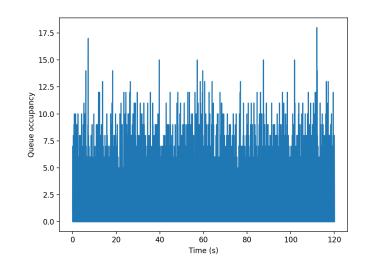


Fig. 4. Back-pressure: queue occupancy over time for worst p95 case under flaky .

Batch	N	p50 (s)	p95 (s)	p99 (s)	Timeout
Flaky		Pe o (o)	P>0 (0)	P>> (5)	
1	7190	0.134	0.511	0.646	0.002
5	7190	0.160	0.510	0.673	0.003
10	7190	0.196	0.560	0.706	0.002
20	7190	0.198	0.580	0.704	0.000
50	7190	0.198	0.560	0.712	0.000
Clear	1				
1	7190	0.050	0.078	0.171	0.000
5	7190	0.077	0.153	0.194	0.000
10	7190	0.109	0.183	0.229	0.000
20	7190	0.118	0.193	0.251	0.000
50	7190	0.118	0.191	0.251	0.000