To create a simple HTML interface demonstrating a spectrogram using the SignalIntelligenceCorePy.pdf
, we need to focus on the signal processing capabilities and extract the necessary components to visualize a spectrogram. Here’s a step-by-step guide to creating this interface:
- Extract Signal Processing Logic: We’ll use the
SignalProcessor
class fromSignalIntelligenceCorePy.pdf
to process IQ data and generate a spectrogram. - Create a Web Interface: We’ll create a simple HTML page with a canvas element to display the spectrogram.
- Integrate with JavaScript: We’ll use JavaScript to handle user interactions and update the spectrogram dynamically.

Let’s start by creating the HTML interface. We’ll use a basic setup with a canvas element to display the spectrogram.
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Spectrogram Visualization</title>
<style>
body {
font-family: Arial, sans-serif;
margin: 0;
padding: 0;
display: flex;
justify-content: center;
align-items: center;
height: 100vh;
background-color: #f0f0f0;
}
#spectrogram-canvas {
border: 1px solid #000;
background-color: #fff;
}
</style>
</head>
<body>
<canvas id="spectrogram-canvas" width="800" height="400"></canvas>
<script>
// Function to draw the spectrogram on the canvas
function drawSpectrogram(spectrum) {
const canvas = document.getElementById('spectrogram-canvas');
const ctx = canvas.getContext('2d');
// Clear the canvas
ctx.clearRect(0, 0, canvas.width, canvas.height);
// Calculate the number of bins and height scale
const numBins = spectrum.length;
const binWidth = canvas.width / numBins;
const maxHeight = canvas.height;
// Draw each bin as a vertical bar
for (let i = 0; i < numBins; i++) {
const binHeight = (spectrum[i] / Math.max(...spectrum)) * maxHeight;
ctx.fillStyle = `rgb(${Math.floor(255 * (i / numBins))}, ${Math.floor(255 * (1 - i / numBins))}, 0)`;
ctx.fillRect(i * binWidth, maxHeight - binHeight, binWidth, binHeight);
}
}
// Example IQ data (replace with real data from SignalIntelligenceCorePy)
const iqData = new Float32Array(1024); // Replace with actual IQ data
// Process IQ data to get spectrum
function processIQData(iqData) {
// Simulate signal processing
const spectrum = new Float32Array(1024); // Replace with actual processing logic
// For demonstration, fill with random values
for (let i = 0; i < 1024; i++) {
spectrum[i] = Math.random() * 100;
}
return spectrum;
}
// Initialize the spectrogram
function initSpectrogram() {
const spectrum = processIQData(iqData);
drawSpectrogram(spectrum);
}
// Call initialization
initSpectrogram();
</script>
</body>
</html>
This HTML template sets up a basic spectrogram visualization. The drawSpectrogram
function takes a spectrum array and draws it on the canvas. The processIQData
function simulates the signal processing logic, which you should replace with the actual logic from SignalIntelligenceCorePy
.
To integrate with SignalIntelligenceCorePy
, you’ll need to:
- Extract the signal processing logic from
SignalIntelligenceCorePy
. - Modify the
processIQData
function to use this logic. - Ensure that the IQ data is correctly passed to the function.
Here’s how you can modify the processIQData
function to use the SignalProcessor
from SignalIntelligenceCorePy
:
// Import SignalProcessor from SignalIntelligenceCorePy
// This is a placeholder for actual import logic
// In a real-world scenario, you would import the class and use it directly
function processIQData(iqData) {
// Create a SignalProcessor instance
const signalProcessor = new SignalProcessor({}); // Pass appropriate configuration
// Process IQ data to get features
const features = signalProcessor.process_iq_data(iqData);
// Extract spectrum from features
return features.spectrum;
}
Make sure to adjust the configuration and import logic according to the actual implementation in SignalIntelligenceCorePy
.
This setup provides a basic framework for visualizing a spectrogram using the signal processing capabilities from SignalIntelligenceCorePy
. You can further enhance this by adding user interactions, real-time data updates, and more detailed visualizations.2 files
