Skip to content

RF Quantum SCYTHE Triangulation Integration Guide

#!/usr/bin/env python3

/github/bgilbert1984/NerfEngine/RF_QUANTUM_SCYTHE/SignalIntelligence/real_world_integration.md

# RF Quantum SCYTHE Triangulation Integration Guide

This document provides guidance on integrating the enhanced triangulation modules into a real-world RF signal intelligence workflow as part of the RF Quantum SCYTHE system.

## Table of Contents

1. [Overview](#overview)

2. [Module Architecture](#module-architecture)

3. [Integration Points](#integration-points)

4. [Pipeline Configuration](#pipeline-configuration)

5. [Calibration Procedures](#calibration-procedures)

6. [Performance Considerations](#performance-considerations)

7. [Deployment Checklist](#deployment-checklist)

## Overview

The enhanced triangulation system provides several key capabilities:

**Enhanced Soft Triangulator**: Robust angle-only triangulation with confidence weighting and uncertainty estimation

**Hybrid Triangulator**: Combined AoA and TDoA triangulation with robust outlier rejection

**Triangulation Loss**: End-to-end trainable loss function for physics-informed learning

These modules can be integrated at multiple points in the RF SCYTHE pipeline to enhance geolocation capabilities.

## Module Architecture

“`

├── soft_triangulator_enhanced.py     # Core triangulation functionality

│   ├── EnhancedSoftTriangulator      # Improved AoA triangulation

│   └── HybridTriangulator            # Combined AoA + TDoA triangulation

├── triangulation_loss.py             # End-to-end training components

│   ├── TDoALossConfig                # Configuration for training

│   └── TriangulationLoss             # Physics-informed loss function

├── demo_hybrid_triangulator.py       # Demonstration and visualization

└── rf_beamforming_tdoa_train.py      # Example training pipeline

“`

## Integration Points

### 1. Real-time Signal Processing Pipeline

Integrate the triangulation modules into the real-time signal processing pipeline:

“`python

from soft_triangulator_enhanced import EnhancedSoftTriangulator, HybridTriangulator

# Initialize once

triangulator = HybridTriangulator(

    angle_bins=your_angle_bins,  # Must match beam pattern configuration

    max_range=your_max_range,    # Maximum expected range in meters

    num_refine_steps=10,         # Higher for accuracy, lower for speed

    refine_lr=1.0,               # Learning rate for gradient refinement

    huber_delta=3.0              # Robustness parameter (higher = more forgiving)

)

# In processing loop

def process_signal_detection(beam_logits, sensor_positions, tdoa_measurements=None):

    “””Process incoming signal detection for geolocation”””

    # Format TDoA measurements if available

    tdoa_pairs = None

    if tdoa_measurements is not None:

        tdoa_pairs = {

            “i”: tdoa_measurements.sensor_i_indices,

            “j”: tdoa_measurements.sensor_j_indices,

            “tdoa_s”: tdoa_measurements.time_differences,

            “sigma_s”: tdoa_measurements.uncertainties,

            “w”: tdoa_measurements.confidence_weights

        }

    # Run triangulation

    result = triangulator(beam_logits, sensor_positions, tdoa_pairs=tdoa_pairs)

    # Extract results

    estimated_position = result[“pos_xy”]

    uncertainty_params = result[“uncertainty”]  # [major_axis, minor_axis, angle_rad]

    # Calculate confidence metrics

    is_high_confidence = (uncertainty_params[:, 0] < 500).float()

    return {

        “position”: estimated_position,

        “uncertainty”: uncertainty_params,

        “confidence”: is_high_confidence,

        “initial_position”: result.get(“initial_pos_xy”, None),

        “tdoa_residual”: result.get(“tdoa_residual”, None)

    }

“`

### 2. Model Training Pipeline

For training RF beamforming networks with physics-informed losses:

“`python

from triangulation_loss import TriangulationLoss, TDoALossConfig

# Configure loss

loss_config = TDoALossConfig(

    position_weight=1.0,    # Weight for direct position supervision

    tdoa_weight=1.0,        # Weight for TDoA consistency

    angle_weight=0.1,       # Weight for angle consistency

    entropy_weight=0.01,    # Entropy regularization

    num_refine_steps=5      # TDoA refinement steps (0 to disable)

)

# Create loss module

triangulation_loss = TriangulationLoss(angle_bins, loss_config)

# In training loop

def training_step(batch):

    # Forward pass

    outputs = model(batch[‘features’])

    beam_logits = outputs[‘beam_logits’]

    # Apply triangulation loss

    loss_dict = triangulation_loss(

        beam_logits=beam_logits,

        sensor_xy=batch[‘sensor_positions’],

        target_positions=batch.get(‘true_positions’),  # Optional

        tdoa_pairs=batch.get(‘tdoa_measurements’)      # Optional

    )

    # Extract losses

    total_loss = loss_dict[‘loss’]

    # Backward pass

    optimizer.zero_grad()

    total_loss.backward()

    optimizer.step()

    return loss_dict

“`

## Pipeline Configuration

### Configuration Parameters

The triangulation system has several important configuration parameters:

| Parameter | Description | Typical Value | Notes |

|———–|————-|————–|——-|

| `angle_bins` | Angle bin centers | linspace(-90°, 90°, 181) | Must match beam pattern |

| `max_range` | Maximum range | 5000.0 m | Adjust for your deployment |

| `temp` | Softmax temperature | 1.0 | Higher = smoother probability |

| `robust_threshold` | Outlier rejection | 3.0 | Higher = more inclusive |

| `num_refine_steps` | TDoA refinement | 10 | More steps = higher accuracy |

### Real-world Considerations

For optimal performance in real-world scenarios:

1. **Beam pattern configuration**: Ensure the angle bins match the physical configuration of your sensors

2. **Sensor position accuracy**: Precisely measure and calibrate your sensor positions

3. **Clock synchronization**: For TDoA, ensure sensors have synchronized clocks or measure/model clock bias

4. **Interference handling**: Use the robust outlier rejection to handle interference and multipath

5. **Mobile sensors**: Update sensor positions in real-time for mobile platforms

## Calibration Procedures

Before deploying in production, perform these calibration procedures:

### 1. Angle Calibration

1. Place a known emitter at a fixed position

2. Record beam patterns from each sensor

3. Calculate the angular offset between expected and measured angles

4. Apply offset corrections to the beam patterns

### 2. TDoA Calibration

1. Measure and record clock biases between sensors

2. Place a known emitter at multiple positions

3. Record TDoA measurements

4. Calculate calibration parameters to minimize TDoA error

### 3. System Verification

1. Deploy known emitters at various positions across the operational area

2. Verify triangulation accuracy at each position

3. Adjust uncertainty models based on empirical error distribution

4. Validate the confidence metrics against ground truth accuracy

## Performance Considerations

### Computational Performance

The triangulation system has been optimized for real-time operation:

**AoA-only triangulation**: Fast and suitable for high-throughput scenarios

**Hybrid triangulation**: More computationally intensive but more accurate

**Batch processing**: All operations support batch processing for efficiency

For resource-constrained environments:

– Reduce `num_refine_steps` to decrease computation time

– Use `EnhancedSoftTriangulator` instead of `HybridTriangulator`

– Pre-compute sensor pair matrices for frequently used sensor configurations

### Accuracy Considerations

Factors affecting triangulation accuracy:

1. **Beam pattern resolution**: More angle bins can improve precision

2. **Sensor geometry**: Wider distribution of sensors improves triangulation

3. **Signal strength**: Stronger signals typically yield better beam estimates

4. **Multipath effects**: Use robust triangulation to mitigate multipath issues

5. **Number of sensors**: More sensors provide redundancy and improved accuracy

## Deployment Checklist

Before deploying to production:

– [ ] Configure angle bins to match physical sensor capabilities

– [ ] Calibrate sensor positions and orientations

– [ ] Measure and apply clock bias corrections

– [ ] Test with known emitter positions across the operational area

– [ ] Validate uncertainty estimates against empirical error distributions

– [ ] Set appropriate thresholds for confidence metrics

– [ ] Integrate with downstream tracking and classification systems

– [ ] Set up monitoring for triangulation quality metrics

## Advanced Integration Example

Here’s a more advanced integration example showing how to combine the triangulation with tracking and classification:

“`python

# Import modules

from soft_triangulator_enhanced import HybridTriangulator

from rf_sequence_recovery_tdoa import TrajectoryInferrer

# Initialize components

triangulator = HybridTriangulator(angle_bins, max_range=5000.0)

trajectory_inferrer = TrajectoryInferrer()

# Process a batch of detections

def process_detection_batch(detections):

    # Group by detection ID/time

    detection_groups = group_detections_by_time(detections)

    # Process each group

    results = []

    for detection_group in detection_groups:

        # Extract beam logits and sensor positions

        beam_logits = detection_group.beam_logits

        sensor_xy = detection_group.sensor_positions

        tdoa_data = detection_group.tdoa_measurements

        # Format TDoA pairs

        tdoa_pairs = format_tdoa_pairs(tdoa_data)

        # Run triangulation

        tri_result = triangulator(beam_logits, sensor_xy, tdoa_pairs=tdoa_pairs)

        # Add to trajectory tracking

        trajectory_inferrer.add_sighting(

            timestamp=detection_group.timestamp,

            position=tri_result[“pos_xy”],

            uncertainty=tri_result[“uncertainty”],

            tdoa_residual=tri_result.get(“tdoa_residual”, None)

        )

        # Store results

        results.append({

            “timestamp”: detection_group.timestamp,

            “position”: tri_result[“pos_xy”],

            “uncertainty”: tri_result[“uncertainty”]

        })

    # Estimate trajectory

    trajectory = trajectory_inferrer.infer_trajectory()

    return {

        “detections”: results,

        “trajectory”: trajectory

    }

“`

This integration approach enables seamless transition from individual position estimates to trajectory inference for moving emitters.

Leave a Reply

Your email address will not be published. Required fields are marked *