Skip to content

Cognitive Radio Applications of Rapid RF Triage: FFT-Only Wins at the Edge

How a 1.5 ms FFT + Hybrid Gate Enables Real-Time Dynamic Spectrum Access

By Benjamin J. Gilbert
Spectrcyde RF Quantum SCYTHE
bgilbert2@com.edu
Full Paper PDF · Reproducible Code


Cognitive Radio in 2025: The Core Loop

graph TD
    A[RF Environment] --> B[Sense Spectrum]
    B --> C{Triage: Digital or Analog?}
    C -->|Analog (FM, AM)| D[Vacate Band]
    C -->|Digital (BPSK, QPSK...)| E[Share / Opportunistic TX]
    E --> F[Transmit]
    F --> A

Triage must be <10 ms, <1M FLOPs, >0.7 AUROC at 0 dB SNR.


Application 1: CBRS-Style Dynamic Spectrum Access (DSA)

BandPrimary UserSecondary User
3.55–3.7 GHzDoD RadarLTE/5G-NR (CBRS)

Triage Role:

  • Detect radar (analog)evacuate in <60 s (FCC rule)
  • Detect LTE/5G (digital)coexist

Why FFT Wins:

MetricFFT+FilterTiny CNN
p99 Latency @ 0 dB1.5 ms6.0 ms
Compute0.25M FLOPs12M
AUROC0.7540.671

FFT meets 60 s evacuation with 40× margin.


Application 2: 6G Unlicensed Shared Spectrum

  • Sub-7 GHz + mmWave
  • AI-Native Air Interface
  • Zero-touch spectrum arbitration

Hybrid Gate in Action:

def triage(iq):
    fft_mag = normalize(fft(iq, n=1024))
    conf, label = light_filters(fft_mag)  # 1.5 ms

    if conf > 0.9:
        return label                       # Fast path
    else:
        return cnn(fft_mag)               # Slow path (rare)
Gate RateAvg Computep99 LatencyUse Case
5%0.8M FLOPs1.5 ms6G Edge Node
20%2.6M FLOPs1.5 msDense Urban

5% gate rate = 15× savings vs pure CNN, same tail latency.


Application 3: Anti-Jamming in Contested Environments

Jammer TypeSpectral Signature
FM SweepSmooth, wideband
BPSK PulseSharp tones

Triage → Countermeasure:

DetectedAction
Analog (FM)Frequency hop away
Digital (BPSK)Null the beam

FFT peak spacing detects symbol rate in <2 ms.


Application 4: Federated Spectrum Sensing Networks

  • 1000s of IoT sensors
  • Each runs FFT triage locally
  • Only ambiguous samples → cloud CNN
graph LR
    S1[Sensor 1] -->|FFT: 0.95 conf| Local Decision
    S2[Sensor 2] -->|FFT: 0.70 conf| Cloud CNN
    Cloud --> Fusion[Global Map]

>95% decisions stay on-device → near-zero backhaul.


Real-World Integration: USRP + GNU Radio Block

// gr-fft_triage.cc
class fft_triage : public gr::sync_block {
    float compute_confidence(float* mag) {
        float energy = band_energy(mag);
        float spacing = peak_spacing(mag);
        return sigmoid(energy * spacing);  // <1 ms
    }
};
  • Input: 1024 IQ samples
  • Output: 0 (analog) or 1 (digital) + confidence
  • Latency: 1.5 ms on E312

Performance in Cognitive Radio Scenarios

ScenarioRequired p99FFT+FilterHybrid (f=0.1)Pure CNN
CBRS SAS<50 msPassPassPass
6G Zero-Touch<5 msPassPassFail
EW Triage<2 msPassPassFail

Only FFT-based methods meet sub-5 ms budgets.


Open Challenge to the Community

Can you beat 0.754 AUROC with <1M FLOPs at 0 dB SNR?

git clone https://github.com/bgilbert1984/rf-triage-benchmark
make challenge

Submit your model → leaderboard.


TL;DR: Cognitive Radio Stack in 2025

LayerTechniqueLatencyCompute
L0Energy Detection0.1 ms10k FLOPs
L1FFT + Light Filters1.5 ms0.25M FLOPs
L2Hybrid Gate → Tiny CNN1.5 ms (p99)0.8M FLOPs (f=0.1)
L3Full DLOfflineCloud

FFT is the new cognitive radio baseline.


Read the paper: FFT-Only vs Learned Spectral Proxies (PDF)
Run the code: github.com/bgilbert1984/rf-triage-benchmark
Cite:

@article{gilbert2025fft,
  title={FFT-Only vs Learned Spectral Proxies for Rapid RF Triage},
  author={Gilbert, Benjamin J.},
  journal={arXiv preprint},
  year={2025}
}

Published October 29, 2025
Share if you’re building the next-generation cognitive radio.

Leave a Reply

Your email address will not be published. Required fields are marked *