How a 1.5 ms FFT + Hybrid Gate Enables Real-Time Dynamic Spectrum Access
By Benjamin J. Gilbert
Spectrcyde RF Quantum SCYTHE
bgilbert2@com.edu
Full Paper PDF · Reproducible Code
Cognitive Radio in 2025: The Core Loop
graph TD
A[RF Environment] --> B[Sense Spectrum]
B --> C{Triage: Digital or Analog?}
C -->|Analog (FM, AM)| D[Vacate Band]
C -->|Digital (BPSK, QPSK...)| E[Share / Opportunistic TX]
E --> F[Transmit]
F --> A
Triage must be <10 ms, <1M FLOPs, >0.7 AUROC at 0 dB SNR.
Application 1: CBRS-Style Dynamic Spectrum Access (DSA)
| Band | Primary User | Secondary User |
|---|---|---|
| 3.55–3.7 GHz | DoD Radar | LTE/5G-NR (CBRS) |
Triage Role:
- Detect radar (analog) → evacuate in <60 s (FCC rule)
- Detect LTE/5G (digital) → coexist
Why FFT Wins:
| Metric | FFT+Filter | Tiny CNN |
|---|---|---|
| p99 Latency @ 0 dB | 1.5 ms | 6.0 ms |
| Compute | 0.25M FLOPs | 12M |
| AUROC | 0.754 | 0.671 |
FFT meets 60 s evacuation with 40× margin.
Application 2: 6G Unlicensed Shared Spectrum
- Sub-7 GHz + mmWave
- AI-Native Air Interface
- Zero-touch spectrum arbitration
Hybrid Gate in Action:
def triage(iq):
fft_mag = normalize(fft(iq, n=1024))
conf, label = light_filters(fft_mag) # 1.5 ms
if conf > 0.9:
return label # Fast path
else:
return cnn(fft_mag) # Slow path (rare)
| Gate Rate | Avg Compute | p99 Latency | Use Case |
|---|---|---|---|
| 5% | 0.8M FLOPs | 1.5 ms | 6G Edge Node |
| 20% | 2.6M FLOPs | 1.5 ms | Dense Urban |
5% gate rate = 15× savings vs pure CNN, same tail latency.
Application 3: Anti-Jamming in Contested Environments
| Jammer Type | Spectral Signature |
|---|---|
| FM Sweep | Smooth, wideband |
| BPSK Pulse | Sharp tones |
Triage → Countermeasure:
| Detected | Action |
|---|---|
| Analog (FM) | Frequency hop away |
| Digital (BPSK) | Null the beam |
FFT peak spacing detects symbol rate in <2 ms.
Application 4: Federated Spectrum Sensing Networks
- 1000s of IoT sensors
- Each runs FFT triage locally
- Only ambiguous samples → cloud CNN
graph LR
S1[Sensor 1] -->|FFT: 0.95 conf| Local Decision
S2[Sensor 2] -->|FFT: 0.70 conf| Cloud CNN
Cloud --> Fusion[Global Map]
>95% decisions stay on-device → near-zero backhaul.
Real-World Integration: USRP + GNU Radio Block
// gr-fft_triage.cc
class fft_triage : public gr::sync_block {
float compute_confidence(float* mag) {
float energy = band_energy(mag);
float spacing = peak_spacing(mag);
return sigmoid(energy * spacing); // <1 ms
}
};
- Input: 1024 IQ samples
- Output:
0(analog) or1(digital) + confidence - Latency: 1.5 ms on E312
Performance in Cognitive Radio Scenarios
| Scenario | Required p99 | FFT+Filter | Hybrid (f=0.1) | Pure CNN |
|---|---|---|---|---|
| CBRS SAS | <50 ms | Pass | Pass | Pass |
| 6G Zero-Touch | <5 ms | Pass | Pass | Fail |
| EW Triage | <2 ms | Pass | Pass | Fail |
Only FFT-based methods meet sub-5 ms budgets.
Open Challenge to the Community
Can you beat 0.754 AUROC with <1M FLOPs at 0 dB SNR?
git clone https://github.com/bgilbert1984/rf-triage-benchmark
make challenge
Submit your model → leaderboard.
TL;DR: Cognitive Radio Stack in 2025
| Layer | Technique | Latency | Compute |
|---|---|---|---|
| L0 | Energy Detection | 0.1 ms | 10k FLOPs |
| L1 | FFT + Light Filters | 1.5 ms | 0.25M FLOPs |
| L2 | Hybrid Gate → Tiny CNN | 1.5 ms (p99) | 0.8M FLOPs (f=0.1) |
| L3 | Full DL | Offline | Cloud |
FFT is the new cognitive radio baseline.
Read the paper: FFT-Only vs Learned Spectral Proxies (PDF)
Run the code: github.com/bgilbert1984/rf-triage-benchmark
Cite:
@article{gilbert2025fft,
title={FFT-Only vs Learned Spectral Proxies for Rapid RF Triage},
author={Gilbert, Benjamin J.},
journal={arXiv preprint},
year={2025}
}
Published October 29, 2025
Share if you’re building the next-generation cognitive radio.